

### Outline

- Basic Networking:
  - How things work now plus some problems
- Some network attacks
  - Attacking host-to-host datagram protocols
    - TCP Spoofing, ...
  - Attacking network infrastructure
    - Routing
    - Domain Name System

### Internet Infrastructure



- Local and interdomain routing
  - TCP/IP for routing, connections
  - BGP for routing announcements
- Domain Name System
  - Find IP address from symbolic name (www.cs.stanford.edu)

## TCP Protocol Stack



### **Data Formats TCP Header** Application message - data **Application** message Transport (TCP, UDP) segment TCP data data data packet Network (IP) **TCP** data Link Layer frame TCP **ETF** data **IP** Header Link (Ethernet) Link (Ethernet) Header Trailer

### **Internet Protocol**

- Connectionless
  - Unreliable
  - Best effort
- Notes:
  - src and dest ports not parts of IP hdr

| Version                            | Header Length   |
|------------------------------------|-----------------|
| Type of Service                    |                 |
|                                    | Total Length    |
|                                    | Identification  |
| Flags                              | Fragment Offset |
|                                    | Time to Live    |
|                                    | Protocol        |
| Header Checksum                    |                 |
| Source Address of Originating Host |                 |
| Destination Address of Target Host |                 |
|                                    | Options         |
|                                    | Padding         |
| IP Data                            |                 |



- Internet routing uses numeric IP address
- Typical route uses several hops

# IP Protocol Functions (Summary)

- Routing
  - IP host knows location of router (gateway)
  - IP gateway must know route to other networks
- Fragmentation and reassembly
  - If max-packet-size less than the user-data-size
- Error reporting
  - ICMP packet to source if packet is dropped
- ◆ TTL field: decremented after every hop
  - Packet dropped f TTL=0. Prevents infinite loops.

### Problem: no src IP authentication

- Client is trusted to embed correct source IP
  - Easy to override using raw sockets
  - Libnet: a library for formatting raw packets with arbitrary IP headers
- Anyone who owns their machine can send packets with arbitrary source IP
  - response will be sent back to forged source IP
- Implications: (solutions in DDoS lecture)
  - Anonymous DoS attacks;
  - Anonymous infection attacks (e.g. slammer worm)

UDP

# **User Datagram Protocol**

- Unreliable transport on top of IP:
  - No acknowledgment
  - No congenstion control
  - No message continuation



### **Transmission Control Protocol**

- Connection-oriented, preserves order
  - Sender
    - Break data into packets
    - Attach packet numbers
  - Receiver
    - Acknowledge receipt; lost packets are resent
    - Reassemble packets in correct order



# TCP Header







Received packets with SN too far out of window are dropped

# **Basic Security Problems**

- 1. Network packets pass by untrusted hosts
  - Eavesdropping, packet sniffing
  - Especially easy when attacker controls a machine close to victim
- 2. TCP state can be easy to guess
  - Enables spoofing and session hijacking
- 3. Denial of Service (DoS) vulnerabilities
  - DDoS lecture

# 1. Packet Sniffing

- Promiscuous NIC reads all packets
  - Read all unencrypted data (e.g., "wireshark")
  - ftp, telnet (and POP, IMAP) send passwords in clear!



Sweet Hall attack installed sniffer on local machine

Prevention: Encryption (next lecture: IPSEC)

# 2. TCP Connection Spoofing

- Why random initial sequence numbers? (SN<sub>C</sub>, SN<sub>S</sub>)
- Suppose init. sequence numbers are predictable
  - Attacker can create TCP session on behalf of forged source IP
    - Breaks IP-based authentication (e.g. SPF, /etc/hosts)



# Example DoS vulnerability [Watson'04]

- Suppose attacker can guess seq. number for an existing connection:
  - Attacker can send Reset packet to close connection. Results in DoS.
  - Naively, success prob. is 1/2<sup>32</sup> (32-bit seq. #'s).
  - Most systems allow for a large window of acceptable seq. #'s
    - Much higher success probability.
- Attack is most effective against long lived connections, e.g. BGP

### Random initial TCP SNs

- Unpredictable SNs prevent basic packet injection
  - ... but attacker can inject packets after eavesdropping to obtain current SN
- Most TCP stacks now generate random SNs
  - Random generator should be unpredictable
  - GPR'06: Linux RNG for generating SNs is predictable
    - Attacker repeatedly connects to server
    - Obtains sequence of SNs
    - Can predict next SN
    - Attacker can now do TCP spoofing (create TCP session with forged source IP)



# Routing Vulnerabilities

- Common attack: advertise false routes
  - Causes traffic to go though compromised hosts
- ◆ ARP (addr resolution protocol): IP addr -> eth addr
  - Node A can confuse gateway into sending it traffic for B
  - By proxying traffic, attacker A can easily inject packets into B's session (e.g. WiFi networks)
- OSPF: used for routing within an AS
- BGP: routing between ASs
  - Attacker can cause entire Internet to send traffic for a victim IP to attacker's address.
  - Example: Youtube mishap (see DDoS lecture)

# Interdomain Routing



### **BGP** overview

- Iterative path announcement
  - Path announcements grow from destination to source
  - Packets flow in reverse direction
- Protocol specification
  - Announcements can be shortest path
  - Not obligated to use announced path

# BGP example

[D. Wetherall]



- Transit: 2 provides transit for 7
- Algorithm seems to work OK in practice
  - BGP is does not respond well to frequent node outages

### **Issues**

- Security problems
  - Potential for disruptive attacks
  - BGP packets are un-authenticated
    - Attacker can advertise arbitrary routes
    - Advertisement will propagate everywhere
    - Used for DoS and spam (detailed example in DDoS lecture)
- Incentive for dishonesty
  - ISP pays for some routes, others free

# **Domain Name System**



### **DNS Root Name Servers**

- Hierarchical service
  - Root name servers for top-level domains
  - Authoritative name servers for subdomains
  - Local name resolvers contact authoritative servers when they do not know a name



# **DNS Lookup Example**



### DNS record types (partial list):

- NS: name server (points to other server)
- A: address record (contains IP address)
- MX: address in charge of handling email
- TXT: generic text (e.g. used to distribute site public keys (DKIM) )

# Caching

- DNS responses are cached
  - Quick response for repeated translations
  - Useful for finding servers as well as addresses
    - NS records for domains
- DNS negative queries are cached
  - Save time for nonexistent sites, e.g. misspelling
- Cached data periodically times out
  - Lifetime (TTL) of data controlled by owner of data
  - TTL passed with every record

### **DNS Packet**

- Query ID:
  - 16 bit random value
  - Links response to query



(from Steve Friedl)

# Resolver to NS request



# Response to resolver

Response contains IP addr of next NS server (called "glue")

Response ignored if unrecognized QueryID



# Authoritative response to resolver

bailiwick checking:
response is cached if
it is within the same
domain of query
(i.e. a.com cannot
set NS for b.com)

final answer



### **Basic DNS Vulnerabilities**

- Users/hosts trust the host-address mapping provided by DNS:
  - Used as basis for many security policies:
     Browser same origin policy, URL address bar
- Obvious problems
  - Interception of requests or compromise of DNS servers can result in incorrect or malicious responses
    - e.g.: hijack BGP route to spoof DNS
  - Solution authenticated requests/responses
    - Provided by DNSsec ... but no one uses DNSsec

### DNS cache poisoning (a la Kaminsky'08)

Victim machine visits attacker's web site, downloads Javascript



attacker wins if  $\exists j$ :  $x_1 = y_j$  response is cached and attacker owns bank.com

256 responses:
Random QID y<sub>1</sub>, y<sub>2</sub>, ...

NS bank.com=ns.bank.com
A ns.bank.com=attackerIP

attacker



Victim machine visits attacker's web site, downloads Javascript



attacker wins if  $\exists j$ :  $\mathbf{x_2} = \mathbf{y_j}$  response is cached and attacker owns bank.com

success after ≈ 256 tries (few minutes)

### Defenses

- ◆ Increase Query ID size. How?
- a. Randomize src port, additional 11 bits

  Now attack takes several hours
- b. Ask every DNS query twice:
  - Attacker has to guess QueryID correctly twice (32 bits)
  - Apparently DNS system cannot handle the load

# Pharming

- DNS poisoning attack (less common than phishing)
  - Change IP addresses to redirect URLs to fraudulent sites
  - Potentially more dangerous than phishing attacks
  - No email solicitation is required
- DNS poisoning attacks have occurred:
  - January 2005, the domain name for a large New York ISP, Panix, was hijacked to a site in Australia.
  - In November 2004, Google and Amazon users were sent to Med Network Inc., an online pharmacy
  - In March 2003, a group dubbed the "Freedom Cyber Force Militia" hijacked visitors to the Al-Jazeera Web site and presented them with the message "God Bless Our Troops"

[DWF'96, R'01] **DNS** Rebinding Attack <iframe src="http://www.evil.com"> **DNS-SEC** cannot stop this attack www.evil.com? ns.evil.com 171.64.7.115 TTL = 0 **DNS** server 192.168.0.100 www.evil.com web server corporate web server 171.64.7.115 192.168.0.100

Read permitted: it's the "same origin"

# **DNS** Rebinding Defenses

- Browser mitigation: DNS Pinning
  - Refuse to switch to a new IP
  - Interacts poorly with proxies, VPN, dynamic DNS, ...
  - Not consistently implemented in any browser
- Server-side defenses
  - Check Host header for unrecognized domains
  - Authenticate users with something other than IP
- Firewall defenses
  - External names can't resolve to internal addresses
  - Protects browsers inside the organization

# Summary

- Core protocols not designed for security
  - Eavesdropping, Packet injection, Route stealing, DNS poisoning
  - Patched over time to prevent basic attacks
     (e.g. random TCP SN)
- More secure variants exist (next lecture):
  IP -> IPsec
  DNS -> DNSsec
  BGP -> SBGP